The derivative can be defined in terms of a limit. For a function \(f(t) \) that depends on the variable \(t \), the derivative is \(f'(t) = \frac{df}{dt} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t} \). This corresponds to finding the tangent to the curve at the point \(t \). In practice, for a polynomial, the derivative can be found using the following formula: if \(f(t) = a_2t^2 + a_1t + a_0 \), then \(\frac{df}{dt} = 2a_2t + a_1 \).

The “chain rule” says that if a function \(f \) depends on \(g \) which itself depends on the variable \(x \), i.e. \(f(g(x)) \), then the derivative of \(f \) with respect to \(x \) is \(\frac{df}{dx} = \left(\frac{df}{dg} \right) \left(\frac{dg}{dx} \right) \). For example, if \(f = 2g^2 \) and \(g = x + 3x^2 \), then \(\frac{df}{dx} = (4g) \frac{dg}{dx} = (4(x + 3x^2))(1 + 6x) \).

1. Find the derivative of \(y = 5 + 6x \)
2. Find the derivative of \(f(t) = 10t^{10} \)
3. Find the derivative of \(f(x) = 3x^3 - 9x + 1 \)
4. Find the derivative of \(y = 3t^3 - 12t^2 + 23t \)
5. Find the derivative of \(f(t) = 2t^9 - 5t - 9 + 9t \)
6. Find the derivative of \(z = 2y^6 - 4y^4 + 6y^{-2} + 8 \)
7. Find the derivative of \(y = 2\sqrt{x} + 3\sqrt[3]{x} - 4\sqrt[4]{x} \)
8. Find the derivative of \(f(x) = 2x^{3/5} - 4x^{7/4} + 3x^{8/3} - 8 \)
9. Find the derivative of \(f(t) = \frac{1}{t} - \frac{1}{t^3} + \frac{1}{t^5} \)
10. Find the derivative of \(g(z) = \frac{2}{z^3} \left(1 + \frac{1}{2z^2} - \frac{3}{z^4} \right) \)
11. Find the derivative of \(y = x^2(5x^2 - 2) \)
12. Find the derivative of \(y = (2t - 3)(3t + 2t^2) \)
13. Find the derivative of \(f(x) = \frac{4 - 7x + 8x^3}{x} \)
14. Find the derivative of \(r(t) = \frac{5t^5 - t^3 + 4t}{t^3} \)
15. Find where (if anywhere) the function \(v(t) = \frac{1}{3}t^3 + t^2 - 15t + 2200 \) isn’t instantaneously changing
16. Find where (if anywhere) the function \(a(t) = t^5 - 2t^4 - 5t^3 \) isn’t instantaneously changing
17. Determine where the function \(f(x) = 600 - 40x^3 - 5x^4 + 4x^5 \) is increasing and decreasing.
18. Determine where the function \(f(x) = (x + 3)(x - 1)^2 \) is increasing and decreasing.
19. Determine where, if anywhere, the tangent line to \(f(x) = \frac{1}{3}x^3 - x^2 + 3x \) is parallel to the line \(y = 2x + \frac{1}{2} \).
20. Determine where, if anywhere, the tangent line to \(v(t) = 3t^3 - t^3 \) is parallel to the line \(\omega(t) = 9t - t/9 \).