1. Solve for \(a \): \(3(2 - 5a) = 3 + 2a \)
 (a) \(\frac{3}{17} \)
 (b) \(\frac{17}{3} \)
 (c) \(-\frac{17}{3} \)
 (d) \(-\frac{3}{2} \)
 (e) \(\frac{2}{3} \)

2. Solve for \(x \): \(\frac{x}{2} + \frac{x}{3} = 1 \)
 (a) 3
 (b) 6
 (c) \(\frac{5}{6} \)
 (d) \(\frac{6}{5} \)
 (e) \(\frac{5}{2} \)

3. If \(x - y = -10 \) and \(x - y = -2 \), then
 (a) There is insufficient information to solve the system of equations
 (b) There is no solution that satisfies the above system of equations
 (c) \(x = 15, y = 5 \)
 (d) \(x = -20, y = 10 \)
 (e) \(x = 0, y = 0 \)

4. Solve for \(t \) given the values of the parameters: \(s = u_0 t + \frac{1}{2} a t^2 \), where \(s = 1, a = 3 \) and \(u_0 = 0 \)
 (a) \(\pm \sqrt{\frac{3}{2}} \)
 (b) \(\pm \sqrt{\frac{2}{3}} \)
 (c) 0
 (d) \(\sqrt{\frac{3}{2}} \)
 (e) \(\sqrt{\frac{2}{3}} \)

5. In the right-angled triangle shown, which of the following is true? There may be more than one correct answer, but choose only one
 (a) \(\cos^{-1}(a/c) = \phi \)
 (b) \(\cos^{-1}(c/a) = \phi \)
 (c) \(\cos^{-1}(c/a) = 90^\circ \)
 (d) \(\cos^{-1}(c/a) = \theta \)
 (e) \(\cos^{-1}(a/c) = \theta \)

6. If the radius of a circle is found to be \(r = 0.30 \text{ cm} \), then the area of the circle is:
 (a) \(1.88 \text{ cm}^2 \)
 (b) \(0.94 \text{ cm}^2 \)
 (c) \(0.94 \text{ cm} \)
 (d) \(1.88 \text{ cm} \)
 (e) \(0.28 \text{ cm}^2 \)

7. Once Alice gives half of her money to Hapless Bob, she is left with \$3 and Bob will have twice as much as he had initially. Before the transaction:
 (a) Alice had \$4 and Bob had \$12
 (b) Alice had \$6 and Bob had \$3
 (c) Alice had \$12 and Bob had \$6
 (d) There is insufficient information
 (e) Alice had \$12 and Bob had \$4

8. Evaluate the following derivative at \(x = 2 \): \(\frac{d}{dx} (x^2 - 3x) \)
 (a) 4
 (b) -1
 (c) 1
 (d) -5

9. The following can be reduced to: \(\frac{36(y^2 - z^2)}{(6y + 6z)} \)
 (a) \(6yz \)
 (b) \(6(y - z) \)
 (c) \(\frac{6(y - z)}{yz} \)
 (d) \(\frac{6y}{z} - \frac{6z}{y} \)
 (e) \(6(y + z) \)

10. In the diagram below, \(\theta = 30.0^\circ \). This means that
 (a) \(\phi = 45^\circ \)
 (b) \(\phi = 60^\circ \)
 (c) \(\phi = 30^\circ \)
 (d) \(\phi = 90^\circ \)
 (e) \(\phi = 120^\circ \)