Physics 218 – Exam I

Short Answer:
1) $\theta = 11.3^\circ$
[LO 2.1, 3.1]
2) At the maximum height, H
[LO 11.1, 12.1, 13.1]
3) v_y
[LO 12.2, 13.2]
4) $R = 1.66 \times 10^{-3}$ m3/s
[LO 10.1]
5) $|\mathbf{a}| = 1.68 \times 10^3$ m/s2
[LO 18.1, 19.1, 20.1]

Problem 1:
(a) $h = 602$ m
[LO 3.2, 12.3, 14.1]
(b) $t_{tot} = 38.1$ s
[5.1, 14.2]
(c) t_y
[LO 12.4, 13.3, 13.4]

Problem 2:
(a) $d = 28$ m
[LO1.1, 3.3, 5.2, 14.3, 15.1]
(b) $\alpha = 8.6^\circ$ below the horizontal
[LO 13.5]
(c) $\langle \mathbf{v} \rangle = (64.7\hat{i} - 7.75\hat{j})$ m/s or 65.2 m/s at 6.8$^\circ$ below the horizontal
[LO11.2]

Problem 3:
(a) $\mathbf{v}_{ball/cyclist} = (0.5\hat{i} + 1.0\hat{j})$ m/s or 1.12 m/s at 26.6$^\circ$ clockwise from \hat{j}
[LO 1.2, 2.2, 21.1]
(b) $\mathbf{d}_{train} = 5.0\hat{j}$ m and $\mathbf{d}_{cyclist} = (2.5\hat{i} + 5.0\hat{j})$ m = 5.59 m/s at 26.6$^\circ$ clockwise from \hat{j}
[LO 12.5]
(c) $\theta = 30^\circ$ counterclockwise from \hat{j}
[LO 7.1, 21.2]
(for these answers, we take \hat{i} to be along \mathbf{v}_{rail} and \hat{j} to be along \mathbf{v}_y as shown on the exam)

Problem 4:
(a) $v(t) = a_0t + \frac{2}{3}bt^{3/2}$
[LO 8.1, 14.4, 15.2]
(b) $d = \frac{1}{2}a_0t^2 + \frac{4}{15}bt^{5/2}$
[LO 8.2, 14.5]
(c) $\theta = \tan^{-1} \left[\frac{(a_0t + \frac{2}{3}bt^{3/2})^2}{R(a_0 + bt^{3/2})} \right]$
[LO 1.3, 18.2]