Review of Math & How to Think Physics

<table>
<thead>
<tr>
<th>Approach:3</th>
<th>Explanation:3</th>
<th>Results:4</th>
<th>Total</th>
<th>Group Members’ Names</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>You:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other#1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other#2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other#3:</td>
</tr>
</tbody>
</table>

These are the problems that you and a team of other 2-3 students will be asked to solve during the recitation session next week. Your team can get a higher grade if you think about the approach and explanation for each of these problems BEFORE coming to the recitation session.

1. A grain of sand has in average ### µg.
 a. How many grains of sand are in average in ### kg of sand?
 b. What is the weight of this quantity of sand?
 c. If the density of the sand is ### g/cm³, what is the volume of ### kg of sand?

2. An object moves along the s-axis. Its position at a given moment t is

 \[s = \#\# - \#\# t + \#\# t^2 \]

 a) What is object’s location at t=0?
 b) What is object’s location at t=2s?
 c) What is object’s displacement between t=0 and t=2s?
 d) What is the distance the object travels between t=0 and t=2s?
 e) What is object’s velocity at t=0?
 f) What is object’s velocity at t=2s?
 g) What is object’s average velocity between t=0 and t=2s?
 h) What is object’s acceleration at t=0?
 i) What is object’s acceleration at t=2s?
 j) What is object’s average acceleration between t=0 and t=2s?
3. A cart is moving in two dimensions from the point \(A(##, ##) \) to the point \(B(##, ##) \) (in meters) in ### seconds.
 a) Sketch the displacement then write the displacement and the average velocity.
 b) If the acceleration during this motion is given by the law \(a = ## \text{ (m/s}^2) \), what would be the velocity in the point \(B \)?
 c) Sketch the graph velocity vs. time for this motion.
Approach: Under this tab, list the steps taken by your team for finding each solution. You answer here the questions WHAT? and HOW?

Approach 1.

Approach 2.

Approach 3.

Explanation: Under this tab, explain why your team has chosen those approaches. You answer here the questions WHY? and WHEN?

Explanation 1.

Explanation 2.

Explanation 3.